Planar Elliptic Growth

نویسندگان

  • Dmitry Khavinson
  • Mark Mineev-Weinstein
  • Mihai Putinar
چکیده

The planar elliptic extension of the Laplacian growth is, after a proper parametrization, given in a form of a solution to the equation for areapreserving diffeomorphisms. The infinite set of conservation laws associated with such elliptic growth is interpreted in terms of potential theory, and the relations between two major forms of the elliptic growth are analyzed. The constants of integration for closed form solutions are identified as the singularities of the Schwarz function, which are located both inside and outside the moving contour. Well-posedness of the recovery of the elliptic operator governing the process from the continuum of interfaces parametrized by time is addressed and two examples of exact solutions of elliptic growth are presented. Mathematics Subject Classification (2000). Primary 76S05 ; Secondary 76D27, 31A25, 30C20, 31B35, 35J10 .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix

The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...

متن کامل

On the Corotational Beam Element Formulation in Large Deformation Analysis

This paper sheds more light on the co-rotational element formulation for beams with uniform cross-section. The co-rotational elements are commonly used in problems in which a structure undergoes a large deformation. In this study, the foregoing element obeys the Euler-Bernoulli beam assumptions. Unlike the formulations presented in the literature, in this paper, a number of local nodal coordina...

متن کامل

A two-phase free boundary problem for a semilinear elliptic equation

In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary‎. ‎We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...

متن کامل

On Elliptic Self-motions of Planar Projective Stewart Gough Platforms

It has been previously shown that non-architecturally singular parallel manipulators of Stewart Gough type, where the planar platform and the planar base are related by a projectivity, have either so-called elliptic self-motions or pure translational self-motions. As the geometry of all manipulators with translational selfmotions is already known, we focus on elliptic self-motions. We show that...

متن کامل

Non-existence of planar projective Stewart Gough platforms with elliptic self-motions

In this paper, we close the study on the self-motional behavior of nonarchitecturally singular parallel manipulators of Stewart Gough (SG) type, where the planar platform and the planar base are related by a projectivity κ , by showing that planar projective SG platforms with elliptic self-motions do not exist. The proof of this result demonstrates the power of geometric and computational inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008